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Growing interest in functional genomics[1] has resulted in
technological breakthroughs in advanced proteomics, includ-
ing the intracellular microproteomic analysis of tissues and
cells.[2] Quantitative differences in the proteome at the single-
cell level can be detected by flow cytometry and fluores-
cence,[3] as well as mass spectrometry,[4, 5] whereas microbial
single cell metabolomics has not progressed as rapidly
because it involves studying compounds of larger chemical
variety, higher turnover rates, and lower molecular weights,
coincident with the mass range of common contaminants.
Owing to the low copy number of some intracellular proteins
and the presence of extracellular noise, isogenic cells can
exhibit large differences in their metabolic makeup.[6] This
metabolic noise, part of cellular differences, is poorly
characterized because it requires the multicomponent anal-
ysis of severely volume-limited samples, that is, individual
microbial cells. A technique that can capture metabolic
variations for a large fraction of the hundreds to thousands of
metabolites in single cells or small populations requires
a combination of ultra-low limits of detection, high selectivity,
and high quantitation capability.[7–9]

Currently, most metabolic studies are conducted using
fluorescence measurements,[10] NMR spectroscopy,[11, 12] or
mass spectrometry (MS).[8, 13–18] Fluorescence measurements
provide an ultra-low limit of detection and high selectivity[10]

but typically require labeling of selected metabolites, making
the process laborious, time consuming, and potentially
invasive. NMR and MS are often considered to be comple-
mentary techniques; NMR is viewed as a universal detector
that does not rely on separation but lacks the sensitivity to
analyze single cells. Mass spectrometry is a highly sensitive
technique, but to achieve sufficient selectivity and peak

capacity, it is often coupled with separation techniques. LC–
MS[19] and GC–MS[20–23] are efficient methods to detect and
quantitate thousands of metabolites in complex extracts from
large cell populations. These methods require thousands to
millions of cells to achieve a high coverage of the metab-
olome. The analysis of cellular metabolites using secondary
ion MS (SIMS),[24,25] MALDI MS,[16,26] and laser desorption
ionization (LDI) on nanoporous structures[8] shows promise
for large-scale metabolomic studies.

Recently, we introduced silicon nanopost arrays (NAPA)
as a matrix-free LDI-MS method with highly enhanced ion
yields and photonic properties.[27–29] A typical NAPA chip is
comprised of over two million ordered monolithic silicon
nanoposts (see inset in Figure 1 b). The array is defined by the
height, H, diameter, D, and periodicity, P, of the posts. Posts of
a given diameter exhibit an ion yield resonance at a particular
aspect ratio (Supporting Information, Figure S1).

In this study, Saccharomyces cerevisiae was chosen for
exploring the metabolome in small cell populations and single
cells, because the yeast metabolome and metabolic networks
are relatively small and have been extensively analyzed.[30]

Without distinguishing chemical species in the different
cellular compartments, there are 584 known metabolites
that take part in 1175 reactions organized into 94 major
biochemical pathways.[31] We demonstrate that LDI from
NAPA can capture metabolic changes in single yeast cells and
small cell populations owing to oxidative stress. Intra- and
inter-population differences can also be examined by this
method.

AFM imaging of a yeast cell on a NAPA before and after
laser exposure showed that, as a consequence of the laser
radiation, the intracellular contents were released onto the
nanostructure (Figure 1a). Our results indicate that the limit
of detection for the LDI of various organic and biomolecules
from NAPA can reach approximately 800 zeptomoles (mea-
sured for verapamil standards).[33] Because the estimated
amounts of some primary metabolites, for example, amino
acids, in an approximately 30 fL yeast cell are in the 10 amol
to 30 fmol range, the sensitivity of the NAPA technique
should be sufficient for single microbial-cell analysis.

Small populations (1� n� 80) of S. cerevisiae were
directly deposited and analyzed on NAPA. In the mass
range of small metabolites (50–500 Da), the mass spectra
generated by LDI resulted in numerous peaks yielding up to
108 assignments (Figure 1b) that corresponded to 18 % of the
known metabolome. Table S1 (Supporting Information)
shows the list of metabolite assignments derived from LDI-
MS using NAPA. These tentative assignments were curated
from multiple datasets, assuming protonation and addition of
Na+ or K+ ions in the positive ion mode, as well as proton loss
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for the formation of negative ions. The assignments were
based on mass accuracy with a Dm/z� 0.06 cutoff from
metabolite searches in the Saccharomyces Genome Database
(SGD) (http://www.yeastgenome.org/). Further validation of
most of the assignments requires tandem MS and functional
studies.

Based on these LDI-MS measurements, Figure 1c shows
the coverage of individual metabolic pathways grouped into
families. Table S2 summarizes the aggregated metabolite
coverage for families of biochemical pathways and super-
pathways. The metabolite coverage was calculated as a per-
centage of the total number of metabolites in the pathway
family. Two additional examples of high-metabolite coverage
are shown in Figure S2 for the super-pathway for threonine
and methionine biosynthesis, and the super-pathway for the
tricarboxylic acid (TCA) cycle and the glyoxylate cycle.
Counting the pathways that had at least one metabolite
assigned in the spectra, 67% coverage of the 94 major
pathways was established (see Figure S2 for the coverage of
two selected biochemical pathways).

As metabolite turnover rates in microorganisms are faster
than changes observed in the genome and the proteome,
intracellular metabolic content can be sensitive to analysis
conditions. In addition, significant metabolic differences can
be expected within and among cell populations.[32] Therefore,
analyzing the variances between the spectra of individual
cells, rather than the large populations required for LC–MS[19]

and GC–MS,[20] can reveal intra- and inter-population differ-
ences.

Separation and analysis techniques for single animal cells
have recently been introduced and are currently used in
various research laboratories.[9, 10] These metabolic studies
involve either the analysis of only a few chemical species
using fluorescence, or require the use of larger cells with
volumes of 500 fL or greater. NAPA has the sensitivity and

quantitation capabilities (Figure S3) to enable the
analysis of single yeast cells with approximately
30 fL volume for multiple metabolites.[33] Figure 2a
shows the LDI mass spectrum of a single yeast cell
deposited onto the NAPA surface with minimal
interference from background ions. The identified
peaks correspond to up to 24 species or up to 4% of
the known metabolome with at least one metabolite
detected from 29% of the major biochemical path-
ways. The pathways with the highest coverage were
the biosynthesis of amino acids, nucleotides, and
cofactors. Minimal background interference and
multispecies coverage represent promising attributes
for this label-free single-cell analysis method.

Ion abundance changes in NAPA spectra enable
the quantitative metabolic analysis of small cell
populations and single cells. Comparing the spectra
for cell population sizes of n = 1 and 79 in Fig-
ure 2a,b, respectively, indicates more abundant
peaks from a larger number of species in the multicell
spectrum. By plotting ion intensities for four
common amino acids (proline, lysine, methionine,
and cysteine) as a function of absolute amounts

estimated for population sizes between n = 1 and n = 100
from the average biomass composition of S. cerevisiae,[31]

a quantitative response can be established and analyzed
with a dynamic range of up to three orders of magnitude.

Metabolic network reconstruction of S. cerevisiae based
on genomic information[34] and flux balance analysis can be
used to determine the essential reactions, the participating
biochemical species, and predict complex intracellular
changes that are due to environmental stimuli.[31] Multiple

Figure 1. a) AFM images of a single S. cerevisiae cell on NAPA before (left) and
after (right) laser exposure. As the cell wall is ruptured by the laser pulse, the
intracellular metabolites are exposed and ionization occurs. b) Laser irradiation of
78 yeast cells on the NAPA (*= identified metabolite). Inset: SEM image of the
NAPA used herein. c) Bar graph comparing the number of metabolites involved
in particular biochemical pathways (gray) to the number of identified metabolites
(black). The major biochemical pathways are as follows: A) amino acid biosynthe-
sis, B) fatty acid and lipid biosynthesis, C) carbohydrate biosynthesis, D) nucleo-
side/tide biosynthesis, E) biosynthesis of cofactors, prosthetic groups, and
electron carriers, F) amino acid degradation, G) carbohydrate and sugar degrada-
tion, and H) all other biochemical pathways, including the TCA cycle.

Figure 2. a) Mass spectrum of a single S. cerevisiae cell by LDI-MS
from NAPA. b) Mass spectrum from 79 yeast cells by LDI-MS from
NAPA. c) Ion intensities for four amino acids (proline (&), lysine (*),
methionine (~), and cysteine (!)) as a function of their estimated
amounts in small cell populations of increasing size in the 1�n�100
range. Cell numbers are indicated for proline. The calculated volume
of a cell is approximately 30 fL.
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attempts to establish the metabolic network for S. cerevisiae
have led to the emergence of consensus models.[35] As the
metabolic map is both complex and can undergo functional
changes, rapid multispecies verification of the models is
necessary. The direct analysis of numerous intracellular yeast
metabolites in conjunction with quantitation capabilities,
demonstrated in Figure 2c, can be used to verify these
models and perhaps resolve ambiguities.

To observe the physiological response in small microbial
cell populations, we studied the metabolic changes in
S. cerevisiae under oxidative stress induced by hydrogen
peroxide in the growth medium. Small populations (n< 80)
of stressed and control cells were studied by LDI-MS from
NAPA to determine the up- and downregulation of various
metabolites. Orthogonal projections to latent structures
discriminant analysis (OPLS-DA) of the spectra indicated
that the observed differences between the stressed and
control populations were statistically significant.

Studying oxidative stress in small yeast cell populations
indicated a metabolic response that resulted in significantly
changed metabolite levels (Figure 3; Table S3). To identify
the metabolites responsible for most of the variance between
the spectra from the stressed and control cell populations, S-
plots were constructed. For metabolites corresponding to the
points with both high correlation and covariance values (the
“wings” of the curve), paired-sample t-tests were conducted
with a p< 0.05 cutoff to assess if the ion intensity changes
were statistically significant. In populations of n� 80 yeast
cells exposed to oxidative stress, 21 statistically significant
metabolic changes were identified. An additional ten peaks in
the mass spectra showed significant changes, but they
remained unassigned.

In the stressed populations, the upregulation of gluta-
thione (a major intracellular redox buffer known to curb
oxidative damage) was observed (p< 0.002), along with two
metabolites involved in its biosynthesis, cysteinylglycine and
glutamylcysteine. Although the upregulation of urate, an
alternative redox buffer, was also observed, S. cerevisiae does
not have the gene for urate oxidase (UOX), the enzyme
necessary for it to curb hydrogen peroxide.[36] Downregula-
tion of compounds related to folate biosynthesis, responsible

for promoting cellular growth, such as amino-4-deoxychor-
ismate and dihydroneopterin phosphate, were also observed
(p< 4 � 10�4) indicating that the cells redirected resources
from growth to fighting stress.

Comparing the single cell spectra from the two popula-
tions (see Figure S4 a,b for an example of each) by OPLS-DA
indicated clear clustering (Figure S4 c) and the absence of
strong outliers. The analysis showed that the spectra from the
stressed and control groups were well separated even at the
single cell level (see the scores plot and the S-plot in Figure S4
and Figure S5 a, respectively).

To identify the metabolites responsible for most of the
variance between the single cell spectra of the stressed and
control populations, an S-plot was generated (Figure S5 a).
Inspecting the points with high covariance and correlation
revealed that threonine and sedoheptulose phosphate were
upregulated, whereas dimethylsulfide, proline, and glycerol
phosphate were downregulated. These and other compounds
with similar parameters in the S-plot can be regarded as
putative biomarkers for oxidative stress derived from single-
cell studies. The differences in the ion intensity distributions
for threonine and dimethylsulfide are apparent from the
histograms in Figure S5b,c. Paired-sample t-tests on this data
confirmed that these changes were statistically significant
with p< 6 � 10�5 for threonine and p< 4 � 10�5 for dimethyl-
sulfide. These examples demonstrate that cellular differences
can be captured by single cell analysis using LDI-MS from the
NAPA ionization method.

To determine the distributions of the measured ion
intensities, spectra from 20 single cells were acquired (Fig-
ure S3a). Histograms of the distributions of the relative ion
intensities for leucine and serine are shown Figure S3 b.
Standard deviations of the average ion intensities, derived
from the single cell spectra, were used to assess cellular
differences. To separate the intra-population differences from
the method-related fluctuations, the variance of the latter was
determined on standard solution samples representing ana-
lyte amounts similar to what was contained in a single cell.
The variance of the method was then subtracted from the
measured variance to yield the variance owing to cellular
differences. Relative standard deviations for the intra-pop-
ulation cellular differences of lysine, methionine, cysteine,
and proline were 26 %, 30 %, 10% and 25 %, respectively.
Based on the histograms, there were no subpopulations with
separate mean averages.

Quantitative investigation of the cellular differences for
various metabolites at the single-cell level can aid in the
analysis of metabolic noise.[37, 38] The histogram in the inset of
Figure 3 shows how the ion intensity distribution for gluta-
thione changes as a result of oxidative stress. The shift in the
mean of the distribution indicates the inter-population differ-
ences. Intra-population differences can be derived from
single-cell studies. Figure S5b,c shows the distribution of
threonine and dimethylsulfide ion intensities. The widths of
the distributions are linked to the intra-population differ-
ences, whereas the difference in the means indicate inter-
population differences.

Currently, information about microbial physiology is
obtained in large cell populations (approximately 106 cells)

Figure 3. Upregulation of 12 intracellular metabolites (gray bars, right
axis) was observed after cells (n�80) were exposed to oxidative stress
for one hour. Downregulation was seen for another nine intracellular
metabolites (black bars, left axis). Inset: histogram of the ion intensity
distributions for glutathione with (gray) or without (black) oxidative
stress. The shift in the mean of the distribution indicates the inter-
population differences.
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through the observation of a single or a few predetermined
metabolic markers and/or through labeling.[39] Nanofabrica-
tion of NAPA structures enables tailoring of the critical
nanopost parameters to best suit the analysis of particular
microorganisms and also to potentially separate and lyse the
cells. Using LDI-MS on NAPA allows for multispecies
analysis of metabolites without their isolation or the use of
labels.[40] As a result, a more complete and rapid assessment of
cellular responses to external and pathophysiological stresses,
normal functional changes, or various mutations[41] can be
observed in small (1< n� 100) cell populations or using
single cells.

The combination of direct cellular analysis on NAPA and
metabolic network modeling on small populations will
enhance our understanding of the roles of metabolic noise
and provide needed insight into functional changes, as well as
intracellular responses, to external and pathophysiological
stresses. Further research is needed to broaden the coverage
of the metabolome, including the metabolites involved in the
biosynthesis of carbohydrates.
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Cellular differences are linked to cell differentiation, the proliferation of cancer and to the development of 

drug resistance in microbial infections. Due to sensitivity limitations, however, large-scale metabolic 

analysis at the single cell level is only available for cells significantly larger in volume than 

Saccharomyces cerevisiae (~30 fL). Here we demonstrate that by a nanophotonic ionization platform and 

mass spectrometry, up to 108 metabolites, or up to 18% of the known S. cerevisiae metabolome, can be 

identified in very small cell populations (n < 100). Relative quantitation of up to 4% of the metabolites is 

achieved at the single cell level. The identified metabolites belong to 63 of the 94 common metabolic 

pathways with most of them present in amino acid, carbohydrate, nucleotide and lipid biosynthesis and 

degradation. Following the changes in metabolic states under oxidative stress reveals inter-population 

differences, i.e., a significant upregulation (p < 0.002) of the redox buffer glutathione and the related 

cysteinylglycine and glutamylcysteine. Downregulation (p < 4×10-4) of amino-deoxychorismate and 

dihydroneopterin phosphate, used in folate biosynthesis, as well as of oxalureate indicates that the cell 

redirects resources from cell growth toward fighting oxidative stress. Single cell analyses show that 

relative standard deviations due to intra-population differences for the abundance of lysine, methionine, 

cysteine, and proline, in the unperturbed yeast population are 26%, 30%, 10% and 25%, respectively. 

Enabling large-scale metabolomic studies of single yeast cells opens the door to following functional 

changes in evolving heterogeneous microbial populations and the analysis of metabolic noise across a cell 

population. 

 

Materials and Methods 

NAPA structures were nanofabricated at the Oak Ridge National Laboratory. Low-resistivity (0.001-

0.005 Ω•cm) boron doped p-type ‹100› silicon wafers were spin-coated with ZEP520A resist. Rectangular 

packed patterns for cylindrical NAPA with P = 337 nm and D = 150 nm were produced by e-beam 

lithography (JEOL JBX-9300). A 10-nm chromium layer was deposited onto the wafer. Removal of the 

underlying resist pattern via sonication in acetone left a chromium mask pattern on the substrate.  

Nanoposts with H = 1200 nm were produced by reactive ion etching using an Oxford PlasmaLab 100 RIE 

system (the inset in Fig. 1b shows an SEM image of part of an array).  

 Optimized NAPA have post diameters and heights of D = 150 nm and H = 1200 nm, respectively 

with a periodicity of P = 337 nm. Ion yields from NAPA structures exhibit strong polarization 

dependence. When a plane-polarized laser beam impinges on a NAPA, the p component of the electric 

field vector, Ep, induces a current, J, in the posts, resulting in energy dissipation (see Fig. S1) and 

efficient ion production. The yield of ions produced from adsorbates drops rapidly as the plane of 

polarization is rotated away from p-polarized and reaches zero as s-polarized irradiation is approached. 

Desorption of the adsorbates is thought to be induced by the rapid heating of the posts due to the 

deposition and radial confinement of laser energy, whereas ionization is facilitated by strong near-field 
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enhancement of the electromagnetic radiation around the posts and the confinement of the laser-induced 

plume in the troughs between the posts. 

 Yeast were grown in an incubator shaker using 10 mL water, 2.5 mL 100 g/L D(+) glucose, 0.25 g 

peptone, and 0.125 g yeast extract (all biochemicals came from Sigma-Aldrich) and cultured for 48 hours 

at 23 °C. Oxidative stress was induced by exposing cell populations to 1 mM hydrogen peroxide (Sigma-

Aldrich) for one hour. Small cell populations were deposited onto NAPA surfaces and allowed to dry 

before analysis. Population sizes were determined using an optical microscope (BX 51, Olympus) with 

long working distance objectives.  

 Yeast cells deposited on NAPA were analyzed by LDI-MS in a Kratos Axima CFR mass 

spectrometer using 337-nm laser radiation. The list of detected yeast metabolites and major biochemical 

pathways were assigned using the Saccharomyces Genome Database (SGD). 

Materials. Yeast extract, peptone, D-(+)-glucose solution (10%), yeast Saccharomyces cerevisiae type II, 

HPLC grade water, L-methionine, L-cysteine, L-proline, L-lysine, and 50 wt. % hydrogen peroxide 

solution were purchased from Sigma Chemical Co. (St. Louis, MO). 2,5-dihydroxybenzoic acid was 

obtained from Protea Biosciences Inc. (Morgantown, WV). Single-side polished mechanical grade, low 

resistivity (0.001-0.005 Ω•cm) p-type silicon wafers, Si:B ‹100›, 280±20 μm thickness were purchased 

from University Wafer (South Boston, MA).  

Nanopost array fabrication. Nanopost arrays (NAPA) were produced in the clean room of the Center 

for Nanophase Materials Sciences (CNMS) at the Oak Ridge National Laboratory (Oak Ridge, TN). Low-

resistivity p-type silicon wafers were spin-coated with ZEP520A resist at 6000 rpm for 45 seconds and 

then baked at 180 °C for 2 minutes. Square patterns for the cylindrical posts were produced with 

periodicities of 337 nm and diameters of 150 nm by e-beam lithography (JEOL JBX-9300). Wafers were 

soaked in xylenes for 30 seconds to remove the exposed resist and rinsed in isopropanol and blow dried 

with nitrogen gas. Wafers were then descummed with a Technics reactive ion etching (RIE) system in 

oxygen plasma at 100 W for 6 seconds. A 10 nm chromium layer was deposited onto the surface with an 

electron beam evaporator at a rate of 0.1 nm per second. The unexposed resist was dissolved to remove 

the corresponding chromium layer by sonication of the wafer in an acetone bath for 2.5 minutes. Using 

RIE in C4F8 and SF6 gases, 1200 nm-high posts were produced at a rate of ~100 nm per minute by an 

Oxford PlasmaLab 100 RIE system. Scanning electron microscope (SEM) images were captured using an 

FEI Nova Nanolab 600 DualBeam system.  

Culturing of Saccharomyces cerevisiae. Medium was created by combining 10 ml of HPLC gradient 

water, 2.5 ml of glucose solution (100 g/L), 0.25 g peptone, and 0.125 g yeast extract in a 50 ml beaker. 

Then 0.26 g Saccharomyces cerevisiae (Type II from Sigma) was added to the medium and the beaker 

was covered with Parafilm. In a MaxQ* 4000 refrigerated shaker (Thermo Scientific, Waltham, MA) the 
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cells were cultured at 150 rpm and 30 °C for 48 hours. For oxidative stress studies 1 mM H2O2 was 

introduced into the culture for 1 hour.  

Sample preparation. Aliquots of the resulting yeast population were inspected by an inverted optical 

microscope (IX 71, Olympus America Corp., Center Valley, PA) to determine the microorganism 

concentrations. Dilutions were made with HPLC grade water to achieve concentrations that yielded the 

desired number of cells on the NAPA. After depositing 0.5 μL of the diluted culture, it was allowed to air 

dry and an optical microscope (BX 51, Olympus) was used to verify the number of cells. 

Single cell preparation. The preparation of single yeast cells was initially conducted in a similar manner 

to larger cell populations. To improve the deposition accuracy and to eliminate liquid overflow on the 

NAPA platform, a nanospray emitter (SilicaTip, New Objective, Woburn, MA) with 10±1 μm tip 

diameter was mounted on a translation stage and a syringe pump (SP100I, WPI, Aston, UK) was used to 

deliver the diluted yeast culture. A partial droplet from the emitter tip was transferred to the NAPA by 

making contact with its surface and retracting the emitter. Optical microscopy was then used to verify that 

only a single cell was deposited. The remaining sample volume for a single yeast cell was ~30 fL. 

Mass spectrometry. LDI-MS experiments were conducted using an Axima CFR curved field reflectron 

time-of-flight mass spectrometer (Shimadzu-Kratos, Manchester, UK). Ion generation was achieved by a 

nitrogen laser emitting 4 ns pulses at 337 nm wavelength focused to a ~200 μm spot size. All mass 

spectra were the average of 100 laser shots acquired in linear mode. In this regime, the mass resolution of 

the instrument for the studied mass range below 1,000 Da was m/Δm ≈ 3,000. Mass accuracies were 

better than ~60 mDa. At the typical laser powers used in these experiments, background ions in the 

absence of cells were negligible. In addition to the LDI-MS experiments, electrospray ionization MS 

(ESI-MS) was used to help with the identification of the detected compounds. Using a Q-TOF Premier 

mass spectrometer (Waters Co., Milford, MA, USA) with an electrospray source, we were able to achieve 

higher mass resolution (m/Δm > 6,000) and better mass accuracy (~5 mDa) than with the LDI-MS 

system, and had the opportunity to perform tandem MS investigations.  Tapping mode atomic force 

microscopy (AFM) was used (MPP-11100, Veeco, Camarillo, CA) with a high aspect ratio (~17.5° side 

angle) and small radius (< 10 nm) tip to verify that the cell walls ruptured due to the laser irradiation.  

Metabolite identification. The identity of several detected ionic species in the LDI-MS spectra from 

NAPA was carefully scrutinized. Yeast samples from the control culture were run on the ESI mass 

spectrometer and in the resulting spectra cytosine, proline, cysteine, homoserine, threonine, lysine, serine, 

and methionine were identified using accurate mass measurements and isotope distribution patterns. 

Distinct fragmentation patterns for proline, lysine, methionine, and cysteine were also used to verify their 

identities. In addition, in the LDI-MS experiments internal standards of proline, lysine, methionine, 

cysteine, indole, indoleacetaldehyde, dihydroneopterin phosphate, and dihydroneopterin triphosphate 
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were added to help with the quantitation. The peaks from these internal standards corresponded to the 

peaks assigned in the yeast spectra.  

Quantitation. Quantitative response was established by depositing various amounts of proline, lysine, 

methionine, and cysteine on NAPA chips and measuring the corresponding ion abundances in LDI-MS 

experiments.  Linear regression for the corresponding calibration curves for lysine and cysteine exhibit 

correlation coefficients of r = 0.997 and r = 0.983, respectively (see Figure S6). The ion signal was 

proportional to the deposited amounts of lysine and cysteine covering over four orders of magnitude with 

the limits of detection (0.3 fmol and 0.8 fmol, respectively) corresponding to quantities below what is 

estimated to be present in a single yeast cell (20 fmol and 3 fmol, respectively).  

Data analysis. Accurate ion masses from the mass spectra were matched with metabolites from the 

Saccharomyces Genome Database (SGD) at http://www.yeastgenome.org/. Pathways were identified 

using the same database. Peak areas in the spectra were determined using a scientific visualization 

package (Origin 8.5, OriginLab Corporation, Northampton, MA). Multivariate statistical analyses, i.e., 

principle component analysis (PCA) and orthogonal projections to latent structures discriminant analysis 

(OPLS-DA) were conducted by the Extended Statistics (XS) module within the MarkerLynx application 

manager (Waters Corp., Milford, MA). To identify up- and downregulated metabolites in oxidative stress 

and to explore cellular differences, the spectra were analyzed using OPLS-DA with Pareto scaling. To 

verify that the means of the ion intensity distributions for the stressed and control populations were 

statistically different, paired-sample t-tests were conducted by the Origin 8.5 program.  
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Supporting Figures 

 

 

 

 
Figure S1. The LDI-MS analysis of small populations and single cells of S. cerevisiae on NAPA relies on 

nanophotonic ion production. The electric field vector, Ei, of the incident p-polarized laser beam induces 

a current, J, in the posts through its E⊥ = Ei sin ϑ component, where ϑ is the angle of incidence. A yeast 

cell of ~30 fL in volume is deposited on the nanoposts. Laser excitation of the posts ruptures the cell, 

ionizes the metabolites and a mass spectrum can be recorded. 
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Figure S2.  Coverage of selected major biochemical pathways. Selected biochemical pathways 

that illustrate the metabolite coverage by LDI-MS from NAPA. (a) Superpathway for threonine 

and methionine biosynthesis and (b) superpathway of tricarboxylic acid (TCA) cycle and 

glyoxylate cycle. Assigned metabolites are indicated by red frame.  
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Figure S3. LDI-MS of S. cerevisiae from NAPA. (a) LDI mass spectra from individual yeast 

cells deposited on NAPA. Inset shows the AFM image of a yeast cell on NAPA before analysis. 

A detailed list of the detected metabolites can be found in B. N. Walker, J. A. Stolee and A. 

Vertes, Anal. Chem. 2012, 84, 7756-7762. (b) Ion intensity histograms from single cell mass 

spectra of (left) leucine and (right) serine based on the analysis of 20 cells.  
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Figure S4. Changes in the mass spectra of single yeast cells reflect the presence of oxidative 

stress. Single cell LDI mass spectra from NAPA (a) with and (b) without oxidative stress. (c) 

The OPLS-DA score plot indicates a clear separation of the stressed (gray squares) and control 

(orange squares) cell spectra. All points are within the 95% Hotelling T2 ellipse indicating that 

there are no strong outliers. 
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Figure S5. a) Correlation as a function of covariance in the mass spectra yields an S-plot. 

Metabolites corresponding to the points with high correlation and covariance (the “wings” of 

the curve) are responsible for most of the variance between the spectra of stressed and 

control cells. For b) threonine and c) dimethylsulfide histograms of the ion intensity 

distributions for the stressed (gray bars) and control cells (orange bars) indicate up- and 

downregulation, respectively. Statistical significance is verified by paired-sample t-tests. 

 



11 
 

 

 

Figure S6. Analysis of lysine and cysteine standards with LDI-MS from NAPA showed 
that the ion signal was proportional to the deposited amounts for over four orders of 
magnitude with limits of detection of 0.3 fmol and 0.8 fmol, respectively. 
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Supporting Tables 

Table S1. Tentative assignments of yeast metabolites observed in small cell populations (n ≤ 80) by positive and 
negative ion LDI-MS from NAPA.** Calculated m/z values are based on monoisotopic masses. 

# Assigned metabolite Ion Calculated m/z Measured m/z Δ m/z
1 Formic acid [M+Na]+ 68.995 68.950 0.045 
2 Propionate [M-H]- 73.030 73.019 0.011 
3 Aminoacetone [M+H]+ 74.060 74.050 0.010 
 [M+Na] + 96.042 96.012 0.030 

4 Amino-propanol [M-H]- 74.061 74.048 0.013 
 [M+Na]+ 98.058 98.042 0.016 
 [M+K] + 114.081 114.089 -0.008 

5 Glyoxylic acid [M+H] + 75.008 74.994 0.014 
 [M+Na] + 96.990 97.010 -0.020 

6 Glycine [M+H] + 76.039 76.047 -0.008 
7 Pyrimidine [M+H] + 81.045 81.010 0.035 
8 Thiocyanic acid [M+Na] + 81.973 81.960 0.013 
9 Dimethylsulfide* [M+Na] + 85.030 85.010 0.020 
10 Diacetyl [M-H] - 85.030 85.039 -0.009 
11 Isobutrate [M-H] - 87.040 87.033 0.007 
12 Methanethiol [M+K] + 87.102 87.064 0.038 
13 Putrescine [M+H] + 89.108 89.064 0.044 
14 Glyceraldehyde [M+H] + 91.039 91.010 0.029 
15 Succinic acid-semialdehyde [M-H] - 101.020 101.040 -0.020 
16 Serine [M-H] - 104.030 104.030 0.000 

 [M+H] + 106.051 106.025 0.026 
17 Cadaverine [M+H] + 103.136 103.132 0.004 
18 Acetoin [M+Na] + 111.040 111.000 0.040 
19 Cytosine [M+H] + 112.051 112.054 -0.003 

 [M+K] + 150.006 150.000 0.006 
20 Uracil [M+H] + 113.035 113.030 0.005 
21 Trimethyl sulfonium [M+K] + 116.006 115.970 0.036 
22 Proline* [M+H] + 116.053 116.071 -0.018 

 Prolinate [M-H] - 114.050 113.990 0.060 
23 Fumaric acid [M+H] + 117.019 117.010 0.009 

 [M-H] - 115.004 115.030 -0.026 
24 Aspartate-semialdehyde [M+H] + 118.050 117.990 0.060 
25 Homoserine [M-H] -  118.050 118.020 0.030 

 [M+H] + 120.066 120.025 0.041 
26 Threonine [M-H] - 118.050 118.020 0.030 

 [M+K]+ 158.060 158.021 0.039 
27 Cysteine [M-H] - 120.012 120.010 0.002 
28 Agmatine [M-H] - 129.110 129.160 -0.050 
29 Oxaloacetate [M-H] - 131.000 131.020 -0.020 
30 Glutarate [M-H] - 131.030 131.020 0.010 
31 Aceto-lactate [M-H] - 131.035 131.020 0.015 
32 Asparagine [M-H] - 131.050 131.020 0.030 
33 Glutamic-semialdehyde [M+H] + 132.066 132.030 0.036 
34 Hydroxyproline [M+H] + 132.103 132.065 0.038 
35 Malate [M-H] - 133.014 133.050 -0.036 
36 Acetolactic acid [M+H] + 133.050 133.074 -0.024 
37 Dihydroxy-isovalerate [M-H] - 133.050 133.050 0.000 
38 Deoxyribose [M-H] - 133.050 133.050 0.000 
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39 Asparagine [M+H] + 133.061 133.074 -0.013 
40 Ornithine [M+H] + 133.097 133.074 0.023 

 [M+Na] + 155.079 155.074 0.005 
41 Aminobenzoic acid [M+H] + 138.055 138.054 0.001 
42 Oxoglutarate [M-H] - 145.014 145.029 -0.015 
43 Glutamine [M+H] + 147.076 147.073 0.013 
44 Methionine [M-H] - 148.040 148.070 -0.030 
45 Xanthine [M-H] - 151.026 151.050 -0.024 
46 Indole [M+K] + 156.021 156.050 -0.029 
47 Orotic acid [M+H] + 157.024 157.044 -0.020 
48 Adenine [M+Na] + 158.060 158.044 0.016 
49 Indoleacetaldehyde [M-H] - 158.060 158.070 -0.010 

 [M+K] + 198.032 198.010 0.022 
50 Aminoadipic acid [M+H] + 162.076 162.054 0.022 
51 Phenylalanine [M+H] + 166.087 166.080 0.007 
52 Pyridinedicarboxylate [M-H] - 166.015 166.028 -0.013 
53 Pyridoxamine [M+H] + 169.097 169.081 0.016 
54 Tetrahydrodipicolinate [M-H] - 170.050 170.050 0.000 
55 Glyceraldehyde phosphatidic 

acid [M+H] + 171.005 170.969 0.036 
56 Dihydroxy-acetone phosphatidic 

acid [M+H] + 171.005 170.996 0.009 
57 Aspartic acid [M+H]+ 172.072 172.091 -0.019 
58 Pyrophosphate [M-H] - 172.900 172.920 -0.020 

 [M+K] + 217.042 217.043 -0.001 
59 Glycerol phosphatidic acid* [M+H] + 173.033 173.021 0.022 
60 Homocysteine [M+K] + 173.999 173.980 0.019 
61 Cysteinylglycine [M+H] + 179.048 179.041 0.007 
62 Acetylphosphatidic acid [M+K] + 178.951 178.950 0.001 
63 Histidinol* [M+K]+ 180.037 180.052 -0.015 
64 Iditol [M+H] + 183.086 183.097 -0.011 
65 Keto-acetamidocaproate [M-H] - 186.077 186.100 -0.023 

 [M+K] + 226.047 226.062 -0.015 
66 Acetyl-glutamate [M-H] - 188.056 188.050 0.006 
67 Isocitrate [M-H] - 191.020 191.009 0.011 
68 Histidine [M+K] + 194.168 194.163 0.005 
69 Gluconate [M-H] - 195.051 195.049 0.002 
70 Phospho-homoserine [M+H] + 200.030 200.060 -0.030 
71 Homocitrate [M-H] - 205.150 205.140 0.010 
72 Lipoamide [M+H] + 206.067 206.093 -0.026 
73 Kynurenine [M+H] + 208.984 208.991 -0.007 

 [M+Na] + 231.074 231.048 0.026 
74 Gluconolactone [M+K] + 217.011 217.006 0.005 
75 Pantothenate [M-H] - 218.103 218.122 -0.019 

 [M+Na] + 242.100 242.040 0.060 
 [M+K] + 258.074 258.130 -0.056 

76 Tyrosine [M+K] + 220.037 220.020 0.017 
77 Aminodeoxychorismic acid [M+H] + 226.068 226.077 -0.009 
78 Chorismic acid [M+H] + 227.056 227.080 -0.024 
79 Deoxycytidine [M+H] + 228.098 228.070 0.028 
80 Xylulose phosphatidic acid [M+H] + 231.027 231.048 -0.021 
81 Cytidine [M+H] + 244.093 244.040 0.053 

 [M+K] + 282.049 282.060 -0.011 
82 Pyridoxal phosphatidic acid [M+H] + 248.032 248.010 0.022 
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 [M+Na] + 270.014 270.060 -0.046 
 [M+K] + 285.988 286.020 -0.032 

83 Glucosamine phosphatidic acid [M+H] + 260.053 260.049 0.004 
84 Glutamate phosphatidic acid [M+K] + 265.983 265.990 -0.007 
85 Inosine [M-H] - 267.070 267.090 -0.020 

 [M+H] + 269.088 269.070 0.018 
 [M+K] + 307.044 307.072 -0.028 

86 Adenosine [M+H] + 268.104 268.080 0.024 
87 Naringenin [M-H] - 271.061 271.023 0.038 
88 Pyridoxine phosphatidic acid [M+Na] + 272.029 272.010 0.019 

 [M+K] + 288.003 288.030 -0.027 
89 Xanthosine [M-H] - 283.068 283.032 0.036 

 [M+K] + 323.039 323.032 0.007 
90 Sedoheptulose phosphatidic 

acid* [M+H]+ 290.160 290.101 0.059 

91 Methylthioadenosine [M+H] + 298.052 298.040 0.012 
92 Acetyl-glucosamine 

phosphatidic acid [M+H] + 302.063 302.040 0.023 
 [M+K] + 340.019 340.010 0.009 

93 Thiamine [M+K] + 304.075 304.048 0.027 
94 Deoxycytidine monophosphate [M-H] - 306.050 306.070 -0.020 
95 Glutathione [M-H] - 306.080 306.070 0.010 

 [M+H] + 308.091 308.073 0.018 
96 Succinyl-amino-ketopimelic 

acid [M+Na] + 312.069 312.040 0.029 
 [M+K] + 328.043 328.060 -0.017 

97 Phosphoribosyl-
formylglycineamide [M+H] + 314.075 314.070 0.005 

 [M-H] - 312.060 312.081 -0.021 
98 Phytosphingosine [M+H] + 318.300 318.312 -0.012 
99 Dihydroneopterin phosphatidic 

acid [M+H] + 336.128 336.113 0.015 
100 Adenosylmethioninamine [M-H] - 354.150 354.120 0.030 
101 Thymidine diphosphatidic acid [M+H] + 403.030 403.042 -0.012 
102 Deoxyuridine diphosphatidic 

acid [M+Na] + 411.420 411.391 
0.029 

103 Phosphatidyl-myo-inositol [M+Na] + 413.046 413.010 0.036 
 [M+K] + 429.020 429.020 0.000 

104 Dihydrofolic acid [M+H] + 444.163 444.149 0.014 
105 Tetrahydrofolic acid [M+H] + 446.178 446.183 -0.005 

 [M+Na] + 468.160 468.141 0.019 
106 Riboflavin phosphate [M-H] - 457.110 457.120 -0.010 
107 Dihydroneopterin triphosphate [M-H] - 493.990 493.990 0.000 
108 Guanosine triphosphatidic acid [M+Na]+ 545.980 545.962 0.018 

*Metabolite ions observed only in the single cell studies. 
**Experience with NAPA ionization indicates that the ratio of the H+, Na+ and K+ adducts changes with the applied laser 
power. At low laser powers, the H+ adduct is prominent. As the laser power is increased Na+ adducts become more abundant. 
Further increasing the laser power results in the dominance of the K+ adducts. The crossover from one adduct type to another 
depends, in part, on the nature of the ionized molecule. Thus, it is possible that, at the power used for these experiments, the 
different metabolites are primarily present in different ionic forms. Our related results for the case of three peptides have been 
reported in the literature: B. N. Walker, J. A. Stolee, D. L. Pickel, S. T. Retterer, A. Vertes, Appl. Phys. A 2010, 101, 539-544. 
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Table S2. Aggregated metabolite coverage for families of yeast biochemical pathways and super-pathways using 
LDI-MS from NAPA. Labels in the first column correspond to the labels in Figure 1c. The percentages are 
calculated with the assumption that all the tentative assignments in Table 1 are correct.  

Label Pathway family 
Assigned 

metabolites
(%) 

A Amino acid biosynthesis 22.4 

B Fatty acid and lipid 
biosynthesis 4.3 

C Carbohydrate biosynthesis 6.8 

D Nucleoside and nucleotide 
biosynthesis 21.5 

E 
Cofactor, prosthetic group, 

and electron carrier 
biosynthesis 

24.3 

F Amino acid degradation 40.4 

G Carbohydrate degradation 0.0 

H All other biochemical 
pathways 12.0 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



16 
 

Table S3. Up- and downregulated metabolites in oxidative stress of yeast.** The data for the first 21 metabolites 
stemming from small population studies (n ≈ 80) is depicted in Figure 3 of the main text. The intensity ratios IS/IC > 
1 and IC/IS > 1 for each metabolite gauge the degree of up- and downregulation, respectively. Here IC and IS stand 
for the intensity of an ion in the control and stressed populations, respectively. In case of ambiguous assignments 
the most likely isomers are listed. Calculated m/z values are based on monoisotopic masses. 

# Assigned metabolite Ion Calculated m/z Measured m/z Δ m/z IS /IC IC/IS p-value 
1 Ethanolamine [M+H]+ 62.061 62.013 0.048  5.34 2×10-4 
2 Alanine [M+H]+ 90.050 90.000 0.050  1.70 3×10-5 
3 Oxoproline [M+H]+ 130.000 129.958 0.042  11.49 3×10-4 
4 Benzaldehyde [M+K]+ 145.140 145.142 -0.002  4.53 2×10-3 
5 Cumic-aldehyde [M+Na]+ 171.079 171.072 0.007  6.32 1×10-6 

Dihydroxy methylvaleric acid [M+Na]+ 171.063 171.072 -0.009  6.32 1×10-6 
Mevalonic acid [M+Na]+ 171.063 171.072 -0.009  6.32 1×10-6 

Oxalureate [M+K]+ 171.115 171.072 0.043  6.32 1×10-6 
6 Tetrahydrodipicolinic acid [M+H]+ 172.061 172.087 -0.026  2.49 7×10-3 

Methionine [M+Na]+ 172.041 172.087 -0.046  2.49 7×10-3 
Aspartic acid [M+K]+ 172.136 172.087 0.049  2.49 7×10-3 

7 Tyrosol [M+K]+ 177.166 177.168 -0.002 2.28  2×10-4 
8 Cysteinylglycine [M+H]+ 178.210 178.202 0.008 1.93  1×10-2 
9 Acetyl-lysine [M+H]+ 189.159 189.153 0.006 2.58  6×10-3 

10 Dehydroquinic acid [M+H]+ 191.056 191.058 -0.002 2.38  3×10-4 
Pyridoxamine [M+Na]+ 191.080 191.058 0.022 2.38  3×10-4 

Uric acid [M+Na]+ 191.018 191.058 -0.040 2.38  3×10-4 
11 Erythrose phosphatidic acid [M+H]+ 201.080 201.120 -0.040 12.60  1×10-7 

12 Glutamylcysteine [M+H]+ 251.270 251.304 -0.034 4.70  3×10-6 

13 Phospho-gluco-lactone [M+H]+ 258.120 258.116 0.004 5.88  2×10-3 

14 Glucose phosphatidic acid [M+H]+ 260.120 260.097 0.023 15.13  4×10-6 

Fructose phosphatidic acid [M+H]+ 260.120 260.097 0.023 15.13  4×10-6 
 15 Amino deoxychorismic acid [M+H]+ 264.162 264.113 0.049  2.85 4×10-4 

16 Sedoheptulose phosphatidic acid [M+H]+ 290.160 290.101 0.059 4.68  1×10-2 

17 Glutathione [M+H]+ 307.320 307.310 0.010 3.43  2×10-3 
18 Cytidine phosphatidic acid [M+H]+ 324.060 324.041 0.019 2.30  4×10-3 
19 Dihydroneopterin phosphatidic acid [M+Na]+ 358.053 358.029 0.024  2.84 2×10-6 

Formylglutathione [M+Na]+ 358.068 358.029 0.039  2.84 2×10-6 
20 Dihydroxyicosa-tetraenoic acid [M+K]+ 375.328 375.342 -0.014  6.92 3×10-3 
21 Guanosine triphosphatidic acid [M+Na]+ 545.980 545.962 0.018 3.82  4×10-2 
22 Dimethylsulfide* [M+Na]+ 85.037 85.013 0.024  6.24 4×10-6 
23 Proline* [M+H] + 116.053 116.071 -0.018  7.13 7×10-6 
24 Threonine* [M+K]+ 158.052 158.021 0.031 5.22  6×10-5 
25 Glycerol phosphatidic acid* [M+H]+ 173.036 173.022 0.014  7.23 3×10-5 
26 Histidinol* [M+K]+ 180.037 180.052 -0.015  2.35 2×10-3 

*Metabolite ion intensity changes observed only in the single cell studies. 
**Experience with NAPA ionization indicates that the ratio of the H+, Na+ and K+ adducts changes with the applied laser 
power. At low laser powers, the H+ adduct is prominent. As the laser power is increased Na+ adducts become more abundant. 
Further increasing the laser power results in the dominance of the K+ adducts. The crossover from one adduct type to another 
depends, in part, on the nature of the ionized molecule. Thus, it is possible that, at the power used for these experiments, the 
different metabolites are primarily present in different ionic forms. Our related results for the case of three peptides have been 
reported in the literature: B. N. Walker, J. A. Stolee, D. L. Pickel, S. T. Retterer, A. Vertes, Appl. Phys. A 2010, 101, 539-544. 


